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1.[6] Find the radius of convergence and the open interval of convergence for the series

∞∑
n=0

(−1)n (2n)! [1 · 7 · 13 · 19 · · · (6n+ 1)]

3n (3n)!
(x− 5)3n.
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2.[11] Find the Taylor series about 2 for the function

f(x) =
(x− 2

x− 1

)2
.

Express your answer in sigma notation, simplify as much as possible, and find the

open interval of convergence. Then use your answer to find the sum of
∞∑
n=2

n− 1

2n
.



DATE: April 15, 2013

EXAMINATION: Engineering Mathematical Analysis 2
COURSE: MATH 2132

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 3 of 15
TIME: 3 hours

EXAMINER: G.I. Moghaddam & M. Virgilio

3. (a)[4] Evaluate the following integral using infinite series∫ 1

0

x2 cos(
√
x) dx .

Express your answer in sigma notation.

(b)[4] If you truncate the series in part (a) after the third term, what is a maximum
possible error? Explain why you can claim that your answer is a maximum
error.
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4.[7] Find, in implicit form, a one parameter family of solutions for the differential
equation

dy

dx
=

xy + 2y − x− 2

xy − 3y + x− 3
.
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5.[10] Find the solution of the initial value problem

−3y′′ = 2x (y′)4 , y′(1) = 1 , y(1) = 10.
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6.[9] Find a general solution for

y′′′ − 4y′′ = 24 x .
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7.[9] Consider the initial value problem

dA

dt
= kA , A(0) = A0 , k < 0

as the model for the decay of a radioactive substance, where A(t) is the amount
of the radioactive substance present, A0 is the initial amount of the radioactive
substance and k is a constant.

(a) Solve the differential equation and show that, in general, the half-life T is

T = − ln 2

k
(i.e. the time it will take to get A(t) =

1

2
A0 ) .

(b) Show that the solution of the initial value problem in part (a) can be written

as A(t) = A0 2
−
t

T .

(c) How long will it take for the radioactive substance to decay to
1

8
of its initial

amount?
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8.[8] Given that m2 (m − 2)2 = 0 is the auxiliary equation of the homogeneous diffe-
rential equation associated with the linear differential equation

φ(D)y = (x + x3) e2x + 1 .

(a) Find the general solution of φ(D)y = 0 .

(b) What is the form of a particular solution yp(x) of the above nonhomogeneous
differential equation?
DO NOT EVALUATE THE COEFFICIENTS IN yp(x).
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9.[8] Find the Laplace transform of the function

f(t) =

{
e−t if 0 ≤ t < 2 ,
t2 if t ≥ 2 .
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10.[10] Find L −1
{

2s2 + 10s

(s2 − 2s+ 5)(s+ 1)

}
.
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11.[14] Use Laplace transforms to solve the initial-value problem

y′′ + 9 y = 3 δ(t− π) + 18 U (t− 2) , y(0) = 1, y′(0) = 10.
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ANSWERS
Q1 Rx =

3

2
and

7

2
< x <

13

2
.

Q2 f(x) =
∞∑
n=1

n(−1)n+1(x− 2)n+1 if 1 < x < 3 .

Then put x =
3

2
to get

∞∑
n=2

n− 1

2n
= 1 .

Q3-a
∞∑
n=0

(−1)n

(n+ 3)(2n)!

Q3-b It is an alternating series with bn =
1

(n+ 3)(2n)!
and the maximum pos-

sible error is b3 =
1

6 (6!)
=

1

4320
.

Q4 y + 2 ln |y − 1| = x+ 5 ln |x− 3|+ C.

Q5 y = 3 3
√
x+ 7.

Q6 yh(x) = C1 + C2x+ C3e
4x and yp(x) = −x3 − 3

4
x2 so then

y = yh + yp = C1 + C2x+ C3e
4x − x3 − 3

4
x2.

Q7-a Take integral and use A(t) =
1

2
A0 to get T = − ln 2

k
.

Q7-b A(t) = A0 e
−
t

T

Q7-c t =
−3 ln 2

k
.

Q8-a yh(x) = C1 + C2x+ (C3 + C4x)e2x .

Q8-b yp(x) = B1x
5e2x +B2x

4e2x + A1x
3e2x + A2x

2e2x +Dx2 .

Q9
1

s+ 1
− e−2(s+1)

s+ 1
+ e−2s(

2

s3
+

4

s2
+

4

s
) .

Q10 −e−t + 3et cos 2t+ 8et sin 2t .

Q11 y(t) = cos 3t+
10

3
sin 3t+sin 3(t−π)u(t−π)+2u(t−2)−2 cos 3(t−2)u(t−2) .
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Formulas Sheet

Function: f(t) Laplace transform: L {f(t)} = F(s)

1
1

s

tn
n!

sn+1
, ( n is a positive integer )

sin kt
k

s2 + k2

cos kt
s

s2 + k2

t sin kt
2ks

(s2 + k2)2

t cos kt
s2 − k2

(s2 + k2)2

eat
1

s− a

tn eat
n!

(s− a)n+1
, ( n is a positive integer )

eat sin kt
k

(s− a)2 + k2

eat cos kt
s− a

(s− a)2 + k2

eat f(t) F (s− a)

U (t− a)
e−as

s
, a ≥ 0

f(t− a)U (t− a) e−as F (s) , a ≥ 0

g(t)U (t− a) e−as L {g(t+ a)} , a ≥ 0

f (n)(t) snF (s)− sn−1f(0)− sn−2f ′
(0)− · · · − f (n−1)(0)

δ(t) 1

δ(t− a) e−as , a ≥ 0

f(t) periodic with period T
1

1− e−sT

∫ T

0

e−st f(t) dt


