UNIVERSITY OF MANITOBA

EXAMINATION: Engineering Mathematical Analysis 2

NAME: (Print in ink) \qquad

STUDENT NUMBER: \qquad

SEAT NUMBER: \qquad

SIGNATURE: (in ink) \qquad
(I understand that cheating is a serious offense)
Place a check-mark (\checkmark) against your instructor's name.
\square A01 G.I. Moghaddam \square A02 M. Virgilio

INSTRUCTIONS TO STUDENTS:

This is a 3 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 11 pages of questions and also 2 blank pages for rough work together with a formulas sheet. Please check that you have all the pages. You may remove the blank pages if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 100 points.

Answer all questions on the exam paper in the space provided beneath the

Question	Points	Score
1	6	
2	11	
3	8	
4	7	
5	10	
6	9	
7	9	
8	8	
9	8	
10	10	
11	14	
Total:	100	

INDICATE that your work is continued.

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 1 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132 EXAMINER: G.I. Moghaddam \& M. Virgilio
[6] 1. Find the radius of convergence and the open interval of convergence for the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)![1 \cdot 7 \cdot 13 \cdot 19 \cdots(6 n+1)]}{3^{n}(3 n)!}(x-5)^{3 n} .
$$

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 2 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[11] 2. Find the Taylor series about 2 for the function

$$
f(x)=\left(\frac{x-2}{x-1}\right)^{2} .
$$

Express your answer in sigma notation, simplify as much as possible, and find the open interval of convergence. Then use your answer to find the sum of $\sum_{n=2}^{\infty} \frac{n-1}{2^{n}}$.

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 3 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH $\overline{2132}$ EXAMINER: G.I. Moghaddam \& M. Virgilio
[4] 3. (a) Evaluate the following integral using infinite series

$$
\int_{0}^{1} x^{2} \cos (\sqrt{x}) d x
$$

Express your answer in sigma notation.
[4] (b) If you truncate the series in part (a) after the third term, what is a maximum possible error? Explain why you can claim that your answer is a maximum error.

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 4 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[7] 4. Find, in implicit form, a one parameter family of solutions for the differential equation

$$
\frac{d y}{d x}=\frac{x y+2 y-x-2}{x y-3 y+x-3} .
$$

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 5 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH $\overline{2132}$ EXAMINER: G.I. Moghaddam \& M. Virgilio
[10] 5. Find the solution of the initial value problem

$$
-3 y^{\prime \prime}=2 x\left(y^{\prime}\right)^{4}, \quad y^{\prime}(1)=1, \quad y(1)=10
$$

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 6 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH $\overline{2132}$
EXAMINER: G.I. Moghaddam \& M. Virgilio
[9] 6. Find a general solution for

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}=24 x .
$$

UNIVERSITY OF MANITOBA

DATE: April 15, 2013

EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132 EXAMINER: G.I. Moghaddam \& M. Virgilio
[9] 7. Consider the initial value problem

$$
\frac{d A}{d t}=k A, \quad A(0)=A_{0}, \quad k<0
$$

as the model for the decay of a radioactive substance, where $A(t)$ is the amount of the radioactive substance present, A_{0} is the initial amount of the radioactive substance and k is a constant.
(a) Solve the differential equation and show that, in general, the half-life T is $T=-\frac{\ln 2}{k}$ (i.e. the time it will take to get $\left.A(t)=\frac{1}{2} A_{0}\right)$.
(b) Show that the solution of the initial value problem in part (a) can be written as $A(t)=A_{0} 2^{-\frac{t}{T}}$.
(c) How long will it take for the radioactive substance to decay to $\frac{1}{8}$ of its initial amount?

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 8 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH $\overline{2132}$ EXAMINER: G.I. Moghaddam \& M. Virgilio
[8] 8. Given that $m^{2}(m-2)^{2}=0$ is the auxiliary equation of the homogeneous differential equation associated with the linear differential equation

$$
\phi(D) y=\left(x+x^{3}\right) e^{2 x}+1
$$

(a) Find the general solution of $\phi(D) y=0$.
(b) What is the form of a particular solution $y_{p}(x)$ of the above nonhomogeneous differential equation?
DO NOT EVALUATE THE COEFFICIENTS IN $y_{p}(x)$.

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 9 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[8] 9. Find the Laplace transform of the function

$$
f(t)=\left\{\begin{array}{lll}
e^{-t} & \text { if } & 0 \leq t<2, \\
t^{2} & \text { if } & t \geq 2 .
\end{array}\right.
$$

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 10 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[10] 10. Find $\mathscr{L}^{-1}\left\{\frac{2 s^{2}+10 s}{\left(s^{2}-2 s+5\right)(s+1)}\right\}$.

UNIVERSITY OF MANITOBA

DATE: April 15, 2013
FINAL EXAMINATION
PAGE: 11 of 15
EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[14] 11. Use Laplace transforms to solve the initial-value problem

$$
y^{\prime \prime}+9 y=3 \delta(t-\pi)+18 \mathscr{U}(t-2), \quad y(0)=1, \quad y^{\prime}(0)=10
$$

UNIVERSITY OF MANITOBA

BLANK PAGE FOR ROUGH WORK

UNIVERSITY OF MANITOBA

BLANK PAGE FOR ROUGH WORK

UNIVERSITY OF MANITOBA

EXAMINATION: Engineering Mathematical Analysis 2
TIME: 3 hours
COURSE: MATH 2132 EXAMINER: G.I. Moghaddam \& M. Virgilio

ANSWERS

Q1 $\quad R_{x}=\frac{3}{2}$ and $\frac{7}{2}<x<\frac{13}{2}$.
Q2 $\quad f(x)=\sum_{n=1}^{\infty} n(-1)^{n+1}(x-2)^{n+1}$ if $1<x<3$.
Then put $x=\frac{3}{2}$ to get $\sum_{n=2}^{\infty} \frac{n-1}{2^{n}}=1$.
Q3-a $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+3)(2 n)!}$
Q3-b It is an alternating series with $b_{n}=\frac{1}{(n+3)(2 n)!}$ and the maximum possible error is $b_{3}=\frac{1}{6(6!)}=\frac{1}{4320}$.

Q4 $y+2 \ln |y-1|=x+5 \ln |x-3|+C$.
Q5 $\quad y=3 \sqrt[3]{x}+7$.
Q6 $\quad y_{h}(x)=C_{1}+C_{2} x+C_{3} e^{4 x}$ and $y_{p}(x)=-x^{3}-\frac{3}{4} x^{2}$ so then $y=y_{h}+y_{p}=C_{1}+C_{2} x+C_{3} e^{4 x}-x^{3}-\frac{3}{4} x^{2}$.

Q7-a Take integral and use $A(t)=\frac{1}{2} A_{0}$ to get $T=-\frac{\ln 2}{k}$.
Q7-b $\quad A(t)=A_{0} e^{-\frac{t}{T}}$
Q7-c $\quad t=\frac{-3 \ln 2}{k}$.
Q8-a $\quad y_{h}(x)=C_{1}+C_{2} x+\left(C_{3}+C_{4} x\right) e^{2 x}$.
Q8-b $\quad y_{p}(x)=B_{1} x^{5} e^{2 x}+B_{2} x^{4} e^{2 x}+A_{1} x^{3} e^{2 x}+A_{2} x^{2} e^{2 x}+D x^{2}$.
Q9 $\frac{1}{s+1}-\frac{e^{-2(s+1)}}{s+1}+e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)$.
Q10 $-e^{-t}+3 e^{t} \cos 2 t+8 e^{t} \sin 2 t$.
Q11 $y(t)=\cos 3 t+\frac{10}{3} \sin 3 t+\sin 3(t-\pi) u(t-\pi)+2 u(t-2)-2 \cos 3(t-2) u(t-2)$.

EXAMINATION: Engineering Mathematical Analysis 2

Formulas Sheet	
Function: $\mathrm{f}(\mathrm{t})$	Laplace transform: $\mathscr{L}\{\mathbf{f}(\mathbf{t})\}=\mathbf{F}(\mathbf{s})$
1	$\frac{1}{s}$
t^{n}	$\frac{n!}{s^{n+1}}, \quad(n$ is a positive integer)
$\sin k t$	$\frac{k}{s^{2}+k^{2}}$
$\cos k t$	$\frac{s}{s^{2}+k^{2}}$
$t \sin k t$	$\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$
$t \cos k t$	$\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}, \quad(n$ is a positive integer $)$
$e^{a t} \sin k t$	$\frac{k}{(s-a)^{2}+k^{2}}$
$e^{a t} \cos k t$	$\frac{s-a}{(s-a)^{2}+k^{2}}$
$e^{a t} f(t)$	$F(s-a)$
$\mathscr{U}(t-a)$	$\frac{e^{-a s}}{s}, \quad a \geq 0$
$f(t-a) \mathscr{U}(t-a)$	$e^{-a s} F(s), \quad a \geq 0$
$g(t) \mathscr{U}(t-a)$	$e^{-a s} \mathscr{L}\{g(t+a)\}, \quad a \geq 0$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)$
$\delta(t)$	1
$\delta(t-a)$	$e^{-a s}, \quad a \geq 0$
$f(t)$ periodic with period T	$\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$

